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I. INTRODUCTION

Partial arc self-acting bearing pads are often used to overcome
rotor-bearing instability. 1In such applications, depending on the
specific design requirements, the bearing may be constructed either of
a single fixed pad, of several fixed pads (multi-lobe bearing), or of
several pivoted or flexibly supported shoes. The vital design informa-
tion consists of both the static and time dependent fluid film forces
of each pad, which ultimately determines the load carrying capacity
of the bearing and the stability characteristics of the rotor-bearing

system.

An important application of the partial-arc type bearings is the
self-acting gas journal bearings operating in a high ambient pressure.
Here the lateral unit load on the journal bearings is extremely small
8o that*half-Erequency Whirl instability is likely to occur for plain
cylindrical journal bearings. Under this condition, the bearing com-
pressibility number, A, is always very small, thus, it is convenient
to solve the lubrication problem by an expansion of the fluid film
pressure in terms of a power series in A.[6]. The first order effect
of this expansion actually gives the same equation applicable to an
incompressible lubricant. The higher order effects are concerned with

equations of increasing complexity, but are nevertheless all linear.

Solution of these equations is no simple matter because of the
varigble coefficients. Tanner fl] has applied the method of Galerkin
to solve the steady state Reynolds equation for a variety of bearing
configurations. The present paper extends this method to consider both
time-dependence and higher order effects of A, Under the assumptions
made herein, the results also may be applied to the calculation .of
critical speed, rotor response [7], as well as the stability of flexible

rotors.

*Half-Frequency Whirl - A special case of instability generally associated
with self-acting journal bearings. This instability occurs when the journal
speed reaches a critical value. The journal axis whirls at a frequency of
one-half or nearly one-half of the journal speed in the same direction as
the journal rotation. The motion of the journal of the journal axis can

be either conical or cylindrical.



II. DERIVATION OF EQUATIONS TO BE SOLVED

The object of this section is to obtain the Reynolds equation

0

where L is a linear operator, f is known function and u is the

in the form

desired solution. We may then obtain our solution by Galerkin's

method. Thus, we consider the nondimensional Reynolds egquation

L{pz}s %[}ﬂ a%]+a%'[h3.a%}{p2-}=m[a% (hp)+26%(hp)] ’

Pt L, =92 e, 1) = L. 1)

We make the following three assumptions:

(D) A is small (i.e., may be used as a perturbation parameter),

(11) p does not depend on time explicitly; i.e.,

op _9p . , 9P .. op op .
5t = 3c €+aé e+...+aad+ad a + ..

(II1I) Time derivatives (e.g., €,%,€,0) are small enough

30 as to make their products negligible.

Then, using Assumption (I), we write

p0,2) = 3§ A p®), (2)
where
p(o) = 1.
Thus,
pl0,2) = & A B W) 0D (3)
J=0

Substitution of (2) and (3) in (1) gives

10 27 -3 [ 23 A

k -
k) j>]} -
j=o

- 2 A{% + 2%} {.h ki Akp(k)} , (%)



from which, equating like poWwers of A, we obtain
k - k ’ - -
] L{Vmp(k J)} . jfo{£ [0 2 eWe®Ds 2[4 2 (W, j)}_

= 2{;%+ 2?-2—} hp(k-l); k=1,2,... (5)

Under Assumption (II) above, (5) becomes
s L {pu)p(k-j)} B I e DU )
§=0 r=1 de 3 11

®)
where

e0T = a"g/ac”

k=1,2,...
We note then, that for k = 1, since p(o) =1, (6) becomes
L {p(l)} - {£— @3 5%—) + £—(h3 3-2—-)}{ (1)} ! [é %‘e‘ + & gg
(6a)

For k>1, we transpose all terms containing p(‘), with £<k, to the right

side of the equation to obtain

a_J2 ko 13 ) 3 (k-1)
R R e STRELE ) (™

k- . i
x5 L {p(J)p(k J)} , k=2,3,... ™)
=1

We now represent each perturbation pressure p(k) as the sum of its
steady state component and its time-dependent components in the form:
k k k k r) (k
p&) - péo) + (e&Jpr(o) +al ]pgt)) , k=1,2,.., ()
r=1

(from (6a), we note that for k =1:

- {chJ) $t {Plo } ; L{Pu) - o) ®)



Using (8) and Assumption (III), we may write

p Wt Ly ) Geod) (ko) %1 (10 4 o1,
r=

k-j - -
+o@ 1) (BG4 ol oD, 0

for
k=2,3...,
j=1,2,...,k.
Then substitution of (8) and (10) in (7) yields
© , 5 U, ® [
{pOO + X (e + por)

r=1

- 5(;_[I,I,(lc 1, h z G 1, (k D4 ol (k 1))] + 2[ d (hp(k D,

k -
‘e &_ (hp(k 1))] w2 & @l gl o oIl gke)

=2 r-1,0 O,r-1
k-1 - .
- (3) (k-3 ksl (k-3) 4 [F]_(3) [rl (1)
L {Pog Poo } %jfl L{ Poo ~'r& 1(e Pro) * O TPg; )}
{p&)) i ([l ) a[rlpélrc-j))} , an
for k = 2,3,...

We note (from (1)) that L is linear; i.e., L{au + bv}= aL {u}+ bL {v}

However, L acting on a product is given by

L{uv}= uL{v}+ vL{u}+ 2h3 (g: g‘é + %—3 g—%)

= ulL {v}+ vL{u}+ 2M (u,v) (12)

We also now define the "known'" functions £ (0,z) by

(k) (k)
{poo} fo0"

fr 0} )

) (k)
{pOr } fOr ’

r =1,2,...,k, (13)



(3

A. Steady State Equations

noting that any p occuring in an expression for f(k) has j<k.

Consideration of (11), and use of the relations (12) and
(13) gives

k-1
i 50} - €2 - 2 oD - v (b £Ge9)
+piem) £ 4 m f), p-)y (14)
for k = 2,3,..

B. Time-Dependent Equations (k = 2,3,...)

Again considering (11), matching like e€- and Q- derivative

terms, and using the relations (12) and (13) gives, after some

manipulation:
ﬁl o) (ler)(eor) () | e () (eer)y
o Poo” f10 P10 foo Poo * P10
k-j
(k) - (k) (k-1) (k 1)) (r) (k ), (k-r) (
if ] f50°= 51,0 + 5 (st - = (Poo” £ e £5o)
+ o (p&F), plkom)y j =1,2,3,..., k-1 (15)

00 * Pjo0

(k) (k) (k-1)
L{"ko =fo = ey o

ol £ o1
(k-r) (r) (r) (k r)
*Por  fgo’ t MPgpTs Pyp ) s
k-j
(k) (k) (k-1) (k 1) (r) (k r) (k-r) (r)
L{pOj = fg; = Zhpg . *m (hp )' zZ (Poo” fo5 "+ Pgy “foo
+ o (o), (k Dy, Jo=2,3,...,k1,

{pOk)} f(k)' h(()kk})



Static Stability Derivatives

We are also interested in obtaining equations for the
derivatives of the steady state pressures with respect to

€ and &, Therefore, we consider
k)
3p 3p¢
() _ 3 °F00 9 3 “Pgo ¢
L{1’00 59" "5+ O 5 )t £y -
We assume that:
(1) All necessary derivatives exist, and

(2) h is independent of z.

Then, differentiating the above expression by ¢, we obtain

ap(k) 3¢ (K ap(k)
L 00 | f(k) 00 4 (_1_ £ (K) hah 00 ) oh
¢ € de h 00 X R-C ¢
(k) 2
-3n2 950" ok
1) dco8 *
Similarly, a differentiation by O yields
(k) (k) (k)
%0 | 0 _ oo £ n oo .
L - - =G $ = =
(k)
a2 Bp aZh
S 06

Thus, for any power k of the perturbation series (2) for p,

we have obtained a set of partial differential equations for

the steady state pressure, the time-dependent pressure com-
ponents, and the derivatives of the steady-state pressure

with respect to € and @ all of which are in the form

L {u} =
suitable for numerical solution by the Galerkin method.

We summarize these below for k = 1 and 2.

k = 1:

D oD 4 D M

where

(1) (D dh
{oo f£0 =

(16)

a7



SELNCRNE S

W] _ (W oh ®)
L{"01}= o " ?%
and
(1) (L (1)
9Pgo (1) 2 %Pgo” . 3 3 oh oh 2 %Pgo
L{_B-e—}= £l = (130" —5" )3e36 " h o6 oe UM TSe o )
(18)
(1) ; (1)
950 (1) 2%00 3% 3 dh db . .2 P00
L{ o } 0 =% 5 dase T h de o R e (1Y)
k =2
DD DD oD oD
where
(2) (2) o (1) (1) (1) (1) )
L{oo = 50" = 56 (bPgp ) - Pgo oo - M(Pgg Pgg”)
(1) ¢9) (1),
8p00 op 2 ap
-hgge b [(3%) +( a)] : (20)
(2) £2) (1) - (1) (1) (1)
L{Pm} £10 9 (hp o) + 2 55~(hpgg™) = Pogf1g
215 - Mg i) (21)
(2) (2) 1)
L{ P20 } = £507 = g (22)
o) = D e eng)y 2 Gege)) - Reo'tgy
P51 £y - M (bgy) Gy s 23)

o) - P - i, (24



(2)
L 0| £2) |
SG €

30,
L

(2)
}- fa -

(2) (2)
950 S 6@ 3 %Po0’ 7 2n
d¢ h 00 8 36 de
Bp(z) 2
2 00 9’h
N Se . Bede (23)
(2) (2)
f00" L[l @ 3 %Poo | &
R Lh 00 d8 99 o
(2)
op 2
a2 Poo 3h (26)

R 308
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SOLUTION BY GALERKIN'S METHOD

In the present report, we outline briefly the steps followed
in solving our equations by Galerkin's method. This method is
equivalent to the Rayligy-Ritz procedure in any problem where a
minimum principle applies, as in this case. A complete discussion
is given in [2].

We consider the partial differential equation

L {u) - L w’®) + L @ E) - £

We assume that (See Figure 1.)
h = 1l-¢ cos (8-@).

As boundary conditions, we have

u (+

-—

g - Ly -

2 z) u (0, + D) 0.

From the above it follows that u is an even . function of z, i.e.,
£ (8,z) = £ (8,~ 2)

We assume an approximate solution u (8,z) of the form

- N M ®
u (0,z) = nfl z (2) mfa ¢n SOm (8

where the functions z (z) and GDm (9) are linearly inde-
pendent elements of a complete set (t.e., a set complete in the sense

of the Weierstrass approximation theorem [3] , and satisfy the

(27)

(28)

(29)

(30)

(31)



10
boundary conditions (29). In our case, we choose
- (2n-1) =D ]
Zn(z) cos [ 2 L %
(32)
ma mit
em(e)=snm[ﬁ 0 + 2].

The Con are undetermined coefficients.

Then, following the procedure outlined in [2], we determine the

coefficients c from
mn

B/2 L/D
2 [y [L {a}-f] Zv(z)gu(e)dz 0 =0, (33a)

for v=1,2,...,N; 0 =1,2,...,M. Or,

N M B/z L/D d 348,
[znde (13 9)+h ] 2,0, o do =

B/2 L/D
Gu {’ £(6,2)z, dz de, (33b)

for v =1,2,...,N; 0 =1,2,...,M

Ordinarily, to obtain the coefficients cmn’ we would have to
invert a matrix of order MN x MN. However, with our choice

of Zn(z) and the assumption on h (Eq. 28), the orthogonality
of the cosine functions requires that n = Vv, and (33b) becomes
partially uncoupled. Therefore, we have instead N matrices

each of order M x M to invert.

In the preceding section, we derived the forcing terms f
corresponding to each pressure component and the steady state
pressure derivatives with respect to ¢ and @. We now corres-

pond to each of these a set of coefficient matrices:

N M
“"«- p®) - = &) 8 (o) 2z (), (34a)

n=l m=1 rs

ap( N M
R WL -LRULXE o
n=l m=l ¢



w© 11
k

op

(k)

fKee 200

M
ctgz) 8 (o) z_ (). (34c)

n=l m=l a

M2

The uncoupling in z described above permits us to write the
systems to be inverted as follows, for each value of n (n =1,

2,...,N):

M B/2 L/D
R Y NG AN B A A X T
m=l P8 Hwm;n 8 p B W rs n
bo=1,2,...,M, (35a)
M B/2 L/D
g B 4 . g 20 g T k) g, ey
I um ;n ;ém BL IB/2 p ‘0 € n
bo=1,2,...,M, (35b)
M B/2 L/D
X a o k). g £ z_dz de;
mal o MR o BL  Zg/p Ko €
w=1,2,...M (35¢)

In each of the above, the elements of the matrices Aum'n are
3

identical, and are given by

2 2
3 2(k” + AD)
(ao(n§+}\:)+n:‘j§1{aj cos jo [1-%—1-])(
X sin2 iB/2 } L mo=p
A8y - 4m?

3
2 2 2 .2 cos_(jp/2)
- 9 Z {ajsinja[nm+n“+2>\.n-j]|: :I}’

um;n 3= [1Q> -u’-u?] 2- (2m)?
m#ER
m + u odd (36)
3
in (jp/2)
-my Z{a cos ja n+n +2>~-j S
m#Ep

m + p even



where
a, =—’2(— (1+—:;— ez),
8, = - %? e (1 + —%3 ),
- N
3 =”§"‘%' e,
k, = ma/B,
Xn = (2_..[21-:—1-) .T:[L—D

‘Note that the Au&'n matrices are symmetric in y and m. They

also contain some removable singularities. The limiting values

of terms in (36) are given as follows:

m
lim {s;n (ﬂxéZ)} = (;; 1 s M =m
x== 2m X = 4m
T
1i cos (nx/2) = 7 ﬂ'Sin[i 'u * mﬂ . H->m
m NENCIEN PP I6pm |pxm| ° |p+mod

x> + m|

ein (7x/2) n cos[%|p + mﬂ_ H>m
lim > 2x 7.5 (= £ 16 g "In + m eve

(x"-m7-p7)" - (2mu) um [+ m
x+|u + m|

The computational procedure to obtain pressure is -then as

follows:

1. Calculate the A ‘o matrices from (36) and invert them.
bl
2. For the appropriate pressure component obtain the force-
ing term from Eqs. (9), (14)-(17). These are given in

more detail for k = 1,2 in Eqs. (9), (18)~(26) on pages

3. Obtain the matrix of On vectors from Eqs. (35).
4., Obtain the coefficients ¢ by multiplying the On vectors
by the corresponding inverses of the Apm'n matrices.
?

5. The pressure component is then found using Eqs. (34), (8)
and (2).

4
:

12

f(37)

/
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IV. CALCUIATION OF FORCES

The dimensionless forces along and perpendicular to the line

of centers are denoted FR and FT respectively, and are given by

B/2 L/D

Fp = 2 {6/2 cos (8-Q) é p dz de, (38a)
B/2 L/D

Fpo ==2 [ sin (8<@) [ p dz de, (38b)
-B/2 0

Where p is the pressure component or its derivative with respect

to € or &. Substituting the appropriate summation

N M
P = S Z c 0] Z
n=1 m=1 mn mon

in (38), we may then integrate directly to obtain

N n M
Fp = '%"'11;—'% o ooa Z cmn[Z . 2]"
n=1 m=1 m-=-(B/n)
-cos % cos @, (m oddﬂ
X ’
sin % sin @, (m even) i (39a)
o Loaly o ;. [_= ]
T T D =« n=l 2n-1 a=1 ™ gl a/ﬁ)z_

« cos (B/2)sin &, (m odd)
sin (B/2)cos &, (m even) . (39b)



V.  EXTRAPOLATION PROCEDURE

By use of Richardson's extrapolation procedure (see e.g. [4]), and
Tanner's use * of extrapolation in [1] , we may use results computed
with different values of M and/or N to obtain a closer approximation
to the true solution. We will assume that the z dependence of our
solution can be obtained with very few functions Zn. Henceforth,
we consider N fixed. Then, if we use two values of M, we obtain the
extrapolation formula

2 2 2 2

F=@M, E, - M E)/ (M, -M),
where

F = extrapolated result,

Ei = computed result for M = Mi; i=1,2,

It is of interest to include a short discussion of error growth
in the calculation of f(k) for successive values of k. We assume
truncation error per calculation fixed. (That 1is, we assume M and
N are fixed. Obviously, the greater M and N to begin with, the lower
the truncation error, from the Weierstrass theorem). Thus, for a
given k, we have

k k k

P00 L p (G0

where
(k) th

Py = calculated pressure at the k— stage of computation,

p(k) = true pressure at the kg—l stage,

e(k) = error at the kEE stage.

To calculate f(k + 1) requires derivatives of p(k). But, in
[2], it is shown that the errors in the first derivatives of the
solution function are of the same order as those in the solution

*

In [1], Tanner used a three-term extrapolation, wherein the first term
obviously was not good. If he had used his two better approximate values
in an extrapolation of the form (40) above, his results would have been
much closer to those he used as a standard.

14

(40)
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function itself. Thus, it can be seen that while error does increase
with k, the process is essentially stable in that all errors in the
(k + 1) stage are of order e(k), and therefore, higher values of k

can be computed if the initial truncation errors are kept low.
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VI. SAMPLE RESULTS

A digital computer program has been written to perform the
calculations indicated above for k = 1. Currently being checked

out is a subroutine to extend these results to the case k = 2.

Some computer program results are given herein. The physical

inputs were as follows:

Shoe angle B = 120°

Angle of line of centers O = 60°
L/D = 1.0

Eccentricity ration € = 0.01, 0.8

Results were computed with N = 2, and with two values of M: 4 and 6.
A tabulation follows:

I~ e = 0.01 c=0.8 -
orce
Component M M
4 6 (Ex?rapo- 4 6 (Ext?apo-
lation) § lation)
M o .1 g M [5.00187 |0.00187 | 0.00187 f| 1.367 1.490 | 1.589
Ry 2 Ry
(1) . _1p M) 06.00384 |0.00384 | 0.00384 § 1.111 1.140 | 1.164
T 2 Fp
00 01
TR(I) 0.3453 |0.3467 0.3479 || 5.533 6.865 | 7.931
10
él) 0.3732 |0.3730 0.3728 fl 3.417 3.726 | 3.973
10
. Fél) 0.1899 |0.1898 0.1897 | 9.397 | 11.081 | 12.428
00
Fld) 0.3869 |0.3874 0.3878 | 5.569 5.859 | 6.091
e T
00
Fél) 0.00169 |0.00170 | 0.00171 §-2.030 | -1.693 | -1.423
00
(D) 0.00178 [0.00177 | o0.00176 J-1.861 | -1.807 | -1.764
Too




A plot of the steady state forces and pressure profile is
given as Figure 1, The above results have been compared with

those obtained in [5], and good agreement was found.

17
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CONCLUSIONS

1.

3.

The approach described herein provides a fast, inexpensive,
accurate method of obtaining partial arc and pivoted shoe
bearing data.

It operates over a wide range of conditions (including high
values of €), over which difficulty is encountered in other
(e.g., iterative) approaches.

The expressions given in the present report include compres~

sibility effects of all orders (i.e., powers of A). The computer

program can be extended to obtain these higher order effects.



RECOMMENDATIONS

Al

Computer Program

It is recommended that:

1.

2,

The computer program be extended to include second-order
effects (k = 2).

The program be modified so that Richardson's extrapolation
procedure is performed automatically by the computer.
Programming be included so as to perform numerical quadratures
for higher compressibility effects (values of k), since analyti-

cal procedures are not practical.

Applications

1.

The computer program should be used to generate design charts
for partial arc gas bearings at high ambients to check and sup-
plement presently available data.

The dynamic force derivatives calculated by this computer pro-
gram can be incorporated into rotor dynamics analysis to study
critical speeds and frequency response.

The static and dynamic force derivatives can be used to calcu-
late the threshold speed of instability of rotors supported

in partial arc bearings.

This computer program can be used as a subroutine in a larger
program to study static and dynamic characteristics of multi-
lobe and pivoted shoe bearings.

19
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